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and reasoning.1,2 Research from the last de-
cade on how humans process information3–5 
has led to advances in measurement and anal-
ysis technologies. Recently, researchers have 
introduced various noninvasive brain func-
tional measurements, including event-related 
potential/electroencephalography (ERP/EEG) 
and functional magnetic resonance imaging 
(fMRI). Systematically analyzing this mea-
surement data lets us clarify the relationship 
between a state and an activity. We can also 
use such measurement and analysis to de-
velop more advanced human cognitive mod-
els. Hence, new instrumentation and data 
analysis methods are creating a revolution 
in both AI and brain sciences. The synergy 
between the two fields promises to yield pro-
found advances in our understanding of in-
telligence over the coming decade.3,6,7 

Brain informatics (BI) is a new interdisci-
plinary field that systematically studies the hu-
man information-processing mechanism from 
macro and micro viewpoints. It does this using 
experimental, computational cognitive neu-
roscience technologies and Web-intelligence-
centric advanced information tech nology. In 
particular, BI attempts to understand human 
intelligence in depth to support a long-term, 

holistic vision to uncover the principle and 
mechanisms underlying human information-
processing systems (HIPS). 

The ability to perform large-scale analysis 
and simulation of brain data will shape BI’s 
future. Current research focuses on two key 
questions:

How can we design psychological and •	
physiological experiments to systematically 
obtain various data from HIPS?
How can we manage and analyze such •	
data from multiple viewpoints to discover 
new models of HIPS?

Researchers have developed expert tools—
such as the Brain Vision Analyzer and MEDx 
with statistical parametric mapping—for 
cleaning, normalizing, and visualizing ERP 
and fMRI data, respectively. They’ve also 
studied how to analyze and understand ERP 
and fMRI data using data mining and statis-
tical learning techniques.3-5,8 

To understand human information pro-
cessing (IP) principles and mechanisms re-
lating to higher cognitive functions—such as 
problem solving, reasoning, and learning—
we must develop new brain data-mining 

To understand human intelligence in depth, we must first master the 

brain’s operation mechanisms. Ignoring the brain’s activity and focus-

ing instead on behavior has seriously impeded our ability to understand how 

human beings accomplish complex adaptive and distributed problem-solving 
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techniques based on the BI methodol-
ogy. The human brain is too complex 
for a single data mining algorithm. 
Agent-enriched brain data mining for 
multi-aspect data analysis is thus a 
key BI methodology for analyzing all 
available cognitive experimental data. 
We’ve developed an agent-enriched 
peculiarity-oriented mining (A-POM) 
approach for multi-aspect ERP data 
analysis. We present our approach 
here, along with a case study that dem-
onstrates the BI methodology.

Overview: Brain Informatics 
Methodology
Researchers have traditionally studied 
brain sciences using various disci-
plines, including cognitive science and 
neuroscience. BI, however, represents 
a shift in brain research. We can re-
gard BI as brain sciences in the Web-
intelligence-centric IT age,2,6,7 study-
ing the human brain from the infor-
matics viewpoint—that is, studying 
the brain as a HIPS. 

BI researchers use informatics to 
support brain science studies and at-
tempt to capture new forms of col-
laborative and interdisciplinary work. 
Thus, new kinds of BI methods and 
global research communities will 
emerge through the wisdom Web, an 
enormous, intelligent organism that 
will use data, information, knowl-
edge, and a wisdom hierarchy to move 
toward human-level Web intelligence 
reality.9 These new BI methods will 
incorporate knowledge grids, which 
will enable high-speed, large-scale, 
distributed agent-based analysis and 
computations, as well as radical new 
ways of sharing data and knowledge. 
Despite these changes, lessons from 
both cognitive science and neurosci-
ence remain applicable to BI’s novel 
technological developments.2,6,10

BI emphasizes a systematic approach 
to investigating human IP mechanisms, 
including measuring, collecting, mod-
eling, transforming, managing, and 
mining brain data obtained from vari-

ous cognitive experiments. Such sys-
tematic study currently focuses on four 
main research questions: 

How do thinking-centric brain •	
mech anisms work? 
How can we best design cognitive •	
experiments? 
How can we manage brain data in •	
an integrated way?
How can we analyze brain data •	
deeply and systematically?

In the fi rst case, we can broadly di-
vide the capabilities of human intelli-
gence into two main aspects: perception 
and thinking. Cognitive neuroscience 
researchers have achieved advanced 
results in perception-oriented studies, 
but have reported only a few separate, 
preliminary studies that were think-
ing-oriented or focused on the overall 
human IP process.11 Systematic inves-
tigation of thinking-centric mecha-
nisms is therefore based on both Web 
intelligence research and state-of-the-
art cognitive neuroscience.1,2,7,11,12

Second, to systematically design 
cog nitive experiments, we must design 
tasks for both psychological and phys-
iological experiments. From these, we 
can systematically obtain HIPS data 
for use in multipurpose investigations 
of human thinking- and perception-
centric cognitive functions. To dis-

cover new knowledge and models of 
human IP activities, we must use mul-
tiple data sources and practical mea-
suring methods, such as ERP and 
fMRI. Furthermore, we must system-
atically design cognitive experiments 
so the resulting data is useful for mul-
tiple purposes.

Third, we can investigate how to 
manage the brain data by using a con-
ceptual brain data model. This model 
represents functional relationships 
among multiple brain data sources 
with respect to all major HIPS as-
pects and capabilities. Such data rep-
resentation offers multilevel modeling, 
abstraction, and transformation for 
multi-aspect analysis and simulation. 

Finally, to systematically examine 
how to analyze the brain data deeply, 
we can extract signifi cant patterns 
and features from multiple brain data 
sources obtained by using powerful 
tools, such as ERP and fMRI, and then 
engage in multi-aspect data analysis 
by combining various data mining and 
reasoning methods.3,5,6,12 We can also 
deploy agents for data preprocessing, 
mining, reasoning, and simulation in 
a multiphase process to achieve multi-
aspect analysis and multilevel concep-
tual abstraction and learning.

By addressing each of these key re-
search areas, the BI framework com-
bines analysis and simulation to un-
derstand human intelligence in depth; 
agent-enriched data mining will play a 
central role in its multiphase process.

Case Study: Agent-Enriched 
Peculiarity-Oriented Mining
Our work focuses on human IP activi-
ties at two levels: spatiotemporal fea-
tures and fl ow based on functional re-
lationships among activated brain areas 
for various tasks; and the neural struc-
tures and neurobiological processes 
related to those activated areas. More 
specifi cally, we’re trying to understand 
how neurobiological processes support 
a cognitive process based on BI meth-
odology. We’re thus investigating how 

Brain informatics 

emphasizes a 

systematic approach

to investigating 

human information- 

processing mechanisms.
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a specifi c part of the brain operates at 
a specifi c time, how those operations 
change over time, and how the acti-
vated areas work cooperatively to im-
plement an overall IP system.

As a step in this direction, we’re 
studying ERP data. Such data is pe-
culiar with respect to a specifi c 
state or the related part of a stimu-
lus. To automate ERP data analysis 
and understanding, we propose the 
A-POM knowledge-discovery ap-
proach. A-POM doesn’t use con-
ventional ERP analysis and doesn’t 
require human-expert-centric visu-
alization.6 Instead, it investigates 
the human IP mechanism through a 
multistep mining process that coop-
eratively employs various psychologi-
cal experiments, physiological mea-
surements, data cleaning, modeling, 
transforming, managing, and mining 
techniques.

A-POM has two main benefi ts for 
addressing the complexity and diver-
sity of brain data and applications: 

A-POM agents cooperate in a mul-•	
tiphase process and support mul-
tilevel conceptual abstraction and 
learning.
This agent-based approach supports •	
task decomposition for distributed 
data mining. 

Researchers can apply our method-
ology to interpret a HIPS’s spatiotem-
poral features and fl ow. In the cogni-
tive process from perception (in our 
case, a cognitive task stimulated by 
vision) to thinking (computation), the 
A-POM system collects data from sev-
eral event-related points in time and 
transforms them into various forms 
suitable for multi-aspect data analysis. 
The system then explains the results of 
the separate analyses and synthesizes 
them into an overall fl ow. 

Multi-aspect ERP Data analysis
We identifi ed the best use of each fea-
ture using two aspects of ERP data 

analysis—the potential change and the 
frequency element—and experiments 
with multiple diffi culty levels. A-POM 
can also fi nd interesting temporal and 
spatial features in ERP data using the 
potential change and frequency aspects.

It’s clear that a specifi c brain sec-
tion operates in a specifi c time and 
those operations change over time. Al-
though it’s easy to detect ERP data’s 
concavity and convexity (P300 and so 
on) using an existing tool, it’s diffi cult 
to fi nd peculiar data when there are 

multiple channels with concavity and 
convexity.13 Thus, to gain new knowl-
edge and develop new models of hu-
man IP activities, we must attend to 
both the peculiar channel and peculiar 
time of ERPs to investigate the HIPS’s 
spatiotemporal features and fl ow. 

There are many ways to fi nd data 
peculiarities.14–18 Researchers have ap-
plied POM’s attribute-oriented method, 
which analyzes data from a new view-
point and differs from traditional 
statistical methods, in various real-
world problems.8,18 

Defi ning peculiar data. “Peculiar” 
data is a subset of database objects 
with two characteristics:

 1. They’re clearly different from the 
other data set objects.

 2. They constitute a relatively low

percentage of the total objects. 

The fi rst property relates to the ob-
jects’ distance or dissimilarity. Intui-
tively speaking, an object is different 
from other objects if it’s regarded as 
far away from them on the basis of 
certain distance functions. The pecu-
liar object’s attribute values must dif-
fer from those of other objects. We can 
therefore defi ne distance between ob-
jects based on the distance between 
their values.

The second property relates to the 
notion of support. Peculiar data’s sup-
port must be low frequency. The brain 
doesn’t directly compare one object 
to another; it fi rst recognizes objects 
by comparing them to stored repre-
sentations.19 However, as we describe 
later, we use a simplifi ed method of 
comparison.

Identifying peculiar data. At the attri-
bute level, the system can identify pe-
culiar data by fi nding attribute values 
with properties (1) and (2) above. Let 
xij be the value of attribute Aj of the i-th 
tuple in a relation, and n be the number 
of tuples. We can evaluate xij’s peculiar-
ity using a peculiarity factor, PF(xij):

PF x N x xij ij kj
k

n

( ) = ( )
=

∑ ,
α

1  
(1)

where N denotes the conceptual dis-
tance,  is a parameter to denote the 
importance of the distance between xij 
and xkj (which users can adjust), and 
 = 0.5 is the default. 

On the basis of the PF, we simply 
use a threshold value to select pecu-
liar data. More specifi cally, an attri-
bute value is peculiar if its peculiarity 
factor is over a minimum peculiar-
ity p—namely, PF(xit) ≥ p. We can 
compute the threshold value p by the 
distribution of PF as follows: 

(2)
p PF x

PF x

it

it

= ( ) +

× (
meanof

standard deviation ofβ ))
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where  can be adjusted by a user, and 
 = 1 is the default. By adjusting the 
parameter , users can control and ad-
just the threshold value.

Unfortunately, such a POM is not 
totally fit for ERP data analysis. The 
reason is that, for ERP data analy-
sis, the useful aspect is latent time, 
not amplitude. To solve this prob-
lem, in addition to using POM for 
ordinary ERP potential data analy-
sis, we also analyze the gradient data 
derived by difference of potential. 
However, when the raw data’s sam-
pling frequency is high or noise re-
moval is insufficient, noise contami-
nates the gradient data. To solve this, 
we first block potential data each 50 
milliseconds and then use the average 
potential data in the block for POM 
analysis.

The role of POM agents. Having thus 
prepared, we look for peculiar pat-
terns using four kinds of POM agents 
(see Figure 1). We classify these pat-
terns according to two types of pecu-
liarities: temporal (time) and spatial 
(channel).

A-POM 1 (time/potential mining) •	
examines whether the potential at a 
specific time is peculiar when com-
pared with other times in channel i, 
A-POM 2 (time/gradient mining) •	
examines whether the gradient at a 
specific time is peculiar when com-
pared with other times in channel i,
A-POM 3 (spatial/potential min-•	
ing) examines whether the poten-
tial of channel i is peculiar when 
compared with the potential on 
other channels in a specific time t, 
A-POM 4 (spatial/gradient min-•	
ing) examines whether the gradient 
of channel i is peculiar when com-

pared with the gradient on other 
channels in a specific time t. 

We can use these four agent types on 
the spatiotemporal data in all ERP chan-
nels in a distributed cooperative mode.

Experimental Results
Explaining and integrating our  
A-POM-based multi-aspect analy-
sis results is a key issue. We do this 

in four distinct steps. First, we exam-
ine an integrated model of the results 
in relation to spatiotemporal features. 
As Figure 2 shows, we use an example 
of computation processing from the 
macro viewpoint, which consists of 
several component functions of the hu-
man computation mechanism, includ-
ing attention, interpretation, short-
term memory, understanding of work, 
computation, and checking. 
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Figure 1. Event-related potential (ERP) 
peculiarities and multi-peculiarity-
oriented mining (POM) agents. Four 
kinds of POM agents (A-POM 1 to 4) are 
used to find peculiar patterns, which are 
classified into two types of peculiarities 
with respect to the temporal (time) and 
spatial (channel) axes. 

Figure 2. Human computation processing. Such processing consists of several 
component functions, including attention, interpretation, short-term memory, 
understanding of work, computation, and checking. The top-most legend in the 
figure denotes the cognitive task of addition (augend + addend =) and gives 
related descriptions of various cognitive events and functions corresponding to  
the task.  
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We use each cognitive experiment’s 
resulting data for multiple purposes, 
in keeping with the BI methodology. 
Our experiments might, for example, 
satisfy the requirements for investigat-
ing the mechanisms of human visual 
and auditory systems, computation, 
problem solving (that is, we regard the 
computation processing as an exam-
ple of problem-solving processes), and 
HIPS general spatiotemporal features 
and flow. 

Furthermore, we set up two types 
of cognitive experiments with respect 
to a series of computation tasks. The 
two types differ in terms of visual 
attention:

Type A: numbers remain on the •	
screen.
Type B: the subjects must continue •	
to remember numbers while the 
numbers on the screen change. 

For the spatiotemporal viewpoint, we 
collect ERP data of 128 EEG channels 
from six event-related points in time 
with respect to six computational pro-
cessing stages: Augend 1, Augend 2, 
“+”, Addend 1, Addend 2, and “=”. 

Figure 3 provides a global view of 
our proposed model for integrating 
and explaining our results. The hori-

zontal axis denotes time and the ver-
tical axis denotes area (channel). Be-
cause we manage our results in a 
layered structure, it’s easy to discover 
a unique phenomenon and new knowl-
edge. On the other hand, given the dif-
ference in spatiotemporal resolution 
in multi-aspect data analysis, it’s im-
portant that we adequately collate the 
representation of results. 

We’ve applied the A-POM-based ap-
proach to all ERP channels with mul-
tiple difficulty levels for finding pecu-
liar channels and peculiar time bands. 
We obtained some remarkable results 
by comparing results from Type A and 
Type B experiments. 

As an example of human-expert-
centric visualization, Figure 4 shows 
a computation process’s spatiotempo-
ral feature, represented by Type A and 
Type B topographies. We obtain these 
topographies by adding the average of 
seven subjects using an ordinary EEG 
analysis tool. When human experts 
read such figures, they naturally note 
the points of the noticeable positive and 
negative potentials in a spatiotemporal 
mode. Our A-POM-based peculiarity 
analysis supports automatic judgment 
on the location of the more remarkable 
points—that is, the peculiar ones—to 
enrich the expert-centric visualization.

Figure 5 shows the PF values of two 
channels, F8 and P6, in a computation 
process for Type A and Type B, respec-
tively. The reason we selected F8 and 
P6 as examples is that their peculiar-
ity tendencies are the most different 
among the four kinds of mining agents 
(A-POM 1 to 4). In our analyses, we 
normalized the peculiarity threshold 
to 100—that is, we judge a data as pe-
culiar if its peculiarity factor is more 
than 100. Although both channels’ 
PF values increase when a stimulus is 
presented, our experiments show that 
the two channels’ peculiarities dif-
fer among the agent types and when 
comparing Type A and Type B experi-
ments. As for P6, the electric potential 
is almost flat, except when a stimulus 
is presented. Hence, the PF values of 
A-POM 1 and 2, which detect tempo-
ral peculiarity, suddenly increase when 
a stimulus is presented, while the PF 
values of A-POM 3 and 4 are almost 
low because they detect spatial pecu-
liarity. Furthermore, F8 isn’t affected 
by a stimulus presentation, and it has 
long time bands for both positive and 
negative potentials. Hence, we can re-
gard F8 as a channel with a higher spa-
tial peculiarity.

We can obtain remarkable results 
when we compare Type A and Type B 
experiments. Figure 6 shows results of 
A-POM integration for ERP differen-
tial data (Type A and Type B) in two-
digit mental arithmetic tasks. The 
top of the figure shows the ERP dif-
ferential data’s topography. Further-
more, we transformed the ERP data 
into various forms for four kinds of A-
POM-based multi-aspect analysis cor-
responding to five brain areas: frontal 
lobe, left temporal lobe, parietal lobe, 
right temporal lobe, and occipital lobe. 
Each block in the time axis denotes 
200 milliseconds; the plot density 
shows the average PF values during 
that time. Thus, if more blocks have 
deep color in one of the brain areas, 
that area has more peculiar data. Fur-
thermore, orange denotes that Type 
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Figure 3. The multi-agent peculiarity-oriented mining (POM) analysis integration 
model. These POM agents (A-POM 1–4) can act on multiple event-related potential 
(ERP) data sources with different difficulty levels and task types in a distributed 
cooperative mode.
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A has a positive value, while blue de-
notes that Type B has a positive value 
when we derive the difference between 
the two experiment types. In other 
words, a white block is uninteresting 
from a spatiotemporal viewpoint.

As Figure 6 shows, many parietal 
and occipital lobe blocks are deep or-
ange with respect to the timing of pre-
senting stimuli. This means that stron-
ger potential appeared in Type A over 
Type B. In contrast, the same mea-
sure shows many deep blue blocks in 
the frontal and right temporal lobes. 
Thus, stronger potential appeared in 
Type B in these regions. We can obtain 
the same results by observing Figure 
4’s topographies.

When we analyze the results af-
ter the process has been running for 
4,600 ms and 5,000 ms, we see that 

A-POM 3 (spatial potential) has high 
peculiarity in both the frontal lobe 
and the right temporal lobe between 
the two time measures. The areas’ po-
tentials differ greatly in Type A and 
Type B experiments, which we can see 
from a spatial viewpoint in Figure 4. 
On the other hand, both A-POM 1 
and A-POM 2 (temporal peculiarity) 
have high peculiarity between 5,000 
and 5,400 ms. By referring to Figure 
4, we see that the Type A and Type B 
topographies are quite similar. Hence, 
this time zone’s feature is apparently 
distinct from that of other time zones.

Our A-POM-based ERP data min-
ing case study demonstrates the 

BI methodology’s usefulness. By using 

the A-POM-based multi-aspect analy-
sis, we can evaluate data from the pecu-
liarity viewpoint, and thus offer a new 
way to investigate HIPS’s spatiotempo-
ral features and flow. Our methodol-
ogy attempts to broaden cognitive and 
brain scientists’ perspective from a sin-
gle type of experimental data analysis 
toward a long-term, holistic vision that 
can reveal the underlying HIPS’s prin-
ciples and mechanisms.
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Figure 5. Examples of agent-enriched peculiarity-oriented mining (A-POM) analysis. Two example channels, F8 and P6, show the 
results of mining agents (a, b) A-POM 1, (c, d) A-POM 2, (e, f) A-POM 3, and (g, h) A-POM 4 for Type A and Type B experiments.
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Figure 6. Results of agency-enriched peculiarity mining (A-POM) analysis for event-related potential (ERP) differential data in 
Type A and Type B experiments. Each time-axis block is equal to 200 milliseconds; plot density shows the average PF values 
during that time. Orange denotes a positive value for Type A, while blue denotes a positive value for Type B.
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